
Parallel Route Planning with Time-Dependent Graphs

fmautner, emuchnik @ andrew.cmu.edu

May 5 2024

1

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

1 Summary

We set out to investigate the route planning problem in road networks. Road networks can be

modelled as directed graphs where road segments for vertices and connections between roads form

edges. The problem of assigning one car to a route is equivalent to the Single Source Shortest

Path problem (SSSP), and the more general problem of planning routes for multiple cars can be

interpreted as an All Shortest Paths variation (ASP), or a restricted set of sources in the Multiple

Sources Shortest Paths variation (MSSP). This simple characterization, while easy to model, fails to

accurately represent nuances of real road networks. As such, we have opted to use time-dependent

dynamic graphs, where each edge in the graph has an associated time function T , mapping discrete

time-steps t ∈ Z+ to real values c ∈ R describing the road’s cost that time.

Our goal is to perform route planning for multiple vehicles on the same road network, taking

into account their effects on the properties of the graph.

Page 2

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

2 Background

A directed time-dependent graph G is defined as a triple

G = (V,E, T)

Where V is the set of vertices, E is the set of edges, and T : E × Z+ → R is a real-valued function

mapping edges and a time-stamp to its corresponding ‘wait time’. This is useful to describe roads

whose behavior changes over time. For example, a highway might be empty and hence have low

associated cost during early morning, but a high wait time during rush hour, and varying costs

throughout the day. We could model such behavior by defining

T (e, t) =

0 if 00:00 ≤ t < 8:00

5 if 8:00 ≤ t < 16:00

10 if 16:00 ≤ t < 20:00

2 if 20:00 ≤ t < 24:00

As such, the associated weight with edge e changes depending on the time of day to appropriately

model the road’s occupancy.

2.1 Assumptions made

To bettwe model our problem, we made the following assumptions:

1. First-In-First-Out (FIFO) property[1]. This states that if a car x leaves a node u to

node v over an edge e = {u, v} at time tx, and a car y does the same at time ty, with tx ≤ ty,

then car y cannot arrive at v any earlier than car x. More formally,

tx ≤ ty =⇒ T (e, tx) + tx ≤ T (e, ty) + ty

This is a realistic assumption in road networks, where we assume that road speeds are constant

for all vehicles on it. This property is also important to allow for the problem of solving for

shortest paths to be completed in polynomial time [1].

2. Cars cannot wait at vertices. This is a direct consequence from the FIFO property. It

means that if a car arrives at vertex u at time t, it must also depart from it at time t, as for

any node u, time t and edge e = {u, v},

t+ T (e, u) < t+ ϵ+ T (e, t+ ϵ), ∀ϵ > 0

We can model the real world as such by ignoring the fine-grained nature of traffic stops,

instead amortizing them into the cost function T for the given edge.

Page 3

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

2.2 Algorithms

Many popular graph algorithms have time-dependent extensions. In our work, we use an adapted

version of Dijkstra’s path finding algorithm for time-dependent graphs. The main difference is in

how edge distances are relaxed, taking into account the current time and the time-dependent cost

of a given edge. The initial, sequential algorithm is described below:

Algorithm 1 Single-Source Time-Dependent Dijkstra’s (SS-TDD)

Input: Graph G = (V,E, T), start time ts, source us ∈ V
N ← |V |
Visited ← [false] * N
minTime ← [∞] * N
minTime[us] ← ts
PQ← [{ts, u}]
while |PQ| > 0 do

tcurr, u← PQ.pop()
if not Visited[u] then

relax (u, tcurr, {{u′, v′} ∈ E|u′ = u})
end if

end while

Algorithm 2 Edge relaxation procedure for SS-TDD

Input: Vertex u, current time tcurr, outgoing edges of u N(u) = {{u′, v′} ∈ E|u′ = u}
for e = {u, v} in N(u) do

arrival time ← tcurr + T (e, tcurr)
if arrival time < minTime[u] then

minTime[u] ← arrival time
PQ.push(arrival time, u)

end if
end for

These can also be extended into the Multiple Sources Shortest Path variation, or MS-TDD. The

most obvious opportunity for parallelization in this algorithm is in the edge relaxation procedure.

Since each edge goes to a distinct vertex (we assume no double edges), each can be processed

independently and hence concurrently. This is where we start our optimization process to efficiently

solve the routing problem.

Page 4

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

3 Approach

We opted to write our solution in C++ using OpenMP, and ran our software on the GHC cluster

machines supporting the platform choice. The mapping of parallel edge relaxation to processor

threads is quite natural: Since each edge can be processed concurrently, we map all outgoing

edges evenly to the available cores. This is done very simply with OpenMP directives. However, as

discussed in the later sections, this initial approach proved sub-optimal, and many design iterations

were carried out to optimize performance.

3.1 Problem representation and practical considerations

Due to the inherent sparsity of road networks, we opted for an adjacency list graph representation.

We also modelled the time function from edges randomly, as we could not find such information

available. To do so, each edge weight function is defined by two randomly sampled integers c and

b, both in the range [0, 10]. The time function for an edge is then defined as

T (e, t) = (t mod 25) ∗ c+ b

Note that this is a fairly arbitrary definition, but allows for simple graph representation and usage,

while introducing the interesting complications brought by time-dependent edge weights. Another

important note is the periodicity of the function, which more accurately models the capacity of

roads over a 24 hour period. The numbers themselves (0 − 10, 25) are arbitrary, chosen to create

variable edge weights ranging from 0 to 250. These parameters can be easily customized to model

specific networks differently.

To justify these choices, we describe the problem’s representation and the performance debugging

process that led us to this solution.

3.2 The Algorithm

In our final design, we use (for reasons described in the next sections) a sequential implementation

of SS-TDD as a subroutine in a parallel routing algorithm for multiple cars over the road network.

More formally,

Algorithm 3 Multiple Vehicle Routing

Input: Vertices {u1, u2, . . . , uk}, current time tcurr, graph G = (V,E, T)
for each car in parallel do

run SS-TDD(graph, car)
Every N iterations, accumulate graphs

end for

Page 5

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

3.3 Performance debugging

In this subsection we outline the main adaptations we made along the way to the base SS-TDD

implementation.

3.3.1 Naive parallelization over edges (edge relaxation)

This was our first approach at parallelizing the adapted Dijkstra’s algorithm, and arguably the most

natural thought to do so. However, this did not yield good results for multiple reasons. Firstly,

it greatly undermines the available parallel processing power due to the inherent unpredictability

of vertex degrees in road networks. The form of dynamic assignment used in this approach means

that for all vertices with degree less than the number of processors, at least one must stay idle. Fur-

thermore, the individual computation done by each thread is simple and quick, meaning that the

bulk of the time spent by each thread is in synchronization and memory access. Another limiting

factor to the efficacy of this strategy is the fact that most road networks are sparse graphs, meaning

it is quite rare for a road segment (vertex) to have degree greater than the number of processors,

further intensifying the issue previously listed. When testing empirically, the overhead of introduc-

ing parallelism was greater than the gained computation, and the sequential implementation was

superior:

Table 1: Results from Chesapeake graph (see Section 4)

number of threads relax + openMP sequential Speedup

1 0.0000193 0.0000275 1.4300000
2 0.0002512 0.0000275 0.0010954
4 0.0001465 0.0000275 0.1878224
8 0.0162781 0.0000275 0.0016906

The experiments were run 5 times and averaged. The only change between the sequential and

parallel version is the inclusion of an OpenMP directive to parallelize the edge-relaxation loop, and

of a critical section where the priority queue (which is not thread-safe) is updated. This was the

bottleneck of the näıve parallel approach. It is also interesting to note the two order of magnitudes

drop in the already poor performance between 4 and 8 threads. As less vertices can ‘cover’ the

number of processors with out-edges, we see a sharp drop in performance, indicating the idleness

of processors and synchronization costs.

3.3.2 Data Structure choices

We experimented with different graph and intermediary representations when implementing SSSP.

One event where this happened was in the choice of using C++ sets to contain visited vertices on

the graph, or boolean vectors that represent whether a vertex has been visited by our algorithm at

a current iteration. Through empirical testing on the same algorithmic framework, we found the

following:

Page 6

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

Figure 1: set vs. vector visited vertex representation

The experiments were run 5 times and averaged, the only change being the representation of

visited vertices. We found that vector-based representation consistently outperformed set-based

representation, and thus we used it in our final algorithm.

Page 7

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

4 Experiments

This section describes the experiments carried out with the many versions of our approach. We

used several small graphs to assist debugging, as well as three graphs containing real-world road

data of varying size to test our implementation. They are:

• Chesapeake, VA [3]: This small graph contains 39 vertices and 170 edges that describe the

principal road segments of this small city.

Figure 2: Visual representation of Chesapeake road graph

• Luxembourg [3]: This graph represents the road structure of the country of Luxembourg. It

has 114599 vertices representing road segments and 119666 edges connecting them.

• California [2]: This large graph represents the road structure of the state of California. It has

1965206 vertices and 2766607 edges.

Some small adjustments were made to these files in order to match the required format and add

time dependent weights as described in section 3.1. We measured the effect of parallelism in the

multiple source variation of the problem.

We also analyze memory factors such as cache utilization and missing to investigate scalability

concerns on individual SS-TDD implementations.

Page 8

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

5 Results

We find a satisfactory near linear speedup in the route assignment task for multiple vehicles. The

following shows a runtime and speedup chart for the Chesapeake road graph:

Figure 3: Speedup for Multiple Vehicle Routing

Figure 4: Speedup data for Chesapeake

We observe a near-linear speedup between 1 and 4 threads. This is a very reassuring result

that indicates good use of parallel potential. However, there is no gained performance between 4

and 8 threads. The main reason for the near-linear speedups is the very limited synchronization

steps, which we opted to in order to achieve good performance. However, this comes at the cost of

route assignment quality, which is slightly inferior to the sequential algorithm. This however, is a

tradeoff that we believe to be beneficial. To improve results, we need to adjust the parameter N ,

i.e. the number of iterations between synchronization. The current setting is 100.

5.1 Individual SS-TDD performance

The following tables contain information on all tested configurations of algorithmic and data struc-

ture choices. Each value is an average of 5 runs. The tuples before each table indicate the source

vertex and the start time, set to 0 for all cases. As is visible, None of the edge-parallel approaches

were able to outperform a well implemented sequential version.

Page 9

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

Figure 5: Condensed collected data on SSSP variations

5.2 Cache Misses and Scalability

Below we report the number of cache misses and per thread cache misses for the sequential and

each of the set/ vector implementations of the parallel versions of TD-SSSP algorithms. These

were collected using perf profiling.

Page 10

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

Figure 6: Total Cache Misses

Figure 7: Cache Misses per Thread

The Figures above indicate that both the set and vector representation approaches indicate

reasonably good scaling properties, with the number of cache-misses per thread decreasing about

exponentially, at the same rate as the number of threads increases. However, we must note that the

absolute number of cache misses in both approaches is consistently higher, at every thread count,

than that of the sequential version. This likely happens due to false sharing when vertices are being

processed. The high number of cache misses could also be seen as another reason for the vastly

sub-optimal behavior of the parallel versions, although this is still more likely due to overhead and

poor task allocation.

Page 11

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

5.3 Limiting factors of performance

The most apparent limiting factor of parallel performance int he SSSP task is the sparsity of road

network graphs. In the graphs used, very few vertices, if any, have more outgoing edges than there

are processors available. This means that at anay given point in time, many processors may be idle.

As discussed in 3.3.1, this also leads to poor load-balancing, and as a consequence the overheads of

parallelism become harder to justify, especially since each processor is doing work that is quite low

arithmetically dense. This means that processors spend disproportionately large portions of their

time either idle or incurring synchronization costs.

5.4 Limited information based on graph size

Due to our underlying implementation, the size of the graph doesn’t matter as much as how con-

nected it is, in other words, the average degree of each vertex. This can be seen in examples where

execution in the smaller Luxembourg graph was more costly than in the much larger California

graph. This is sensible, as our version of TDD iterates only over those edges in the out-neighbor

set of a vertex. If a graph is more sparse, it is more likely that it contains more disconnected com-

ponents, and hence decrease total runtime. As such, an alternative investigation of the algorithms

studied could involve graphs with constant number of vertices and varying degrees of connective-

ness. This would likely yield more interesting and notable performance-related results, but would

not be an accurate representation of road networks, which are sparse by nature.

5.5 Machine-related points of interest

All of our results were collected on GHC machines, more specifically, ghc61. These are multi-core

machines. The same strategies employed could also be applied to both different hardware and

implemented through different philosophies, such as GPU programming or message passing. It is

important to reiterate, however, the inherent limitations of parallelism on sparse graphs.

Page 12

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

6 Conclusion

The task of parallelizing shortest path algorithms over time-dependent graphs can be non-trivial

based on graph specifications. For road networks, where the graphs are sparse, we found that

parallelizing edge-related operations is inefficient, as rarely can a vertex saturate all processors with

its edges. However, we found ample opportunity for parallelism in the Multiple Source Shortest

Path problem, by using a fast sequential implementation of SS-TDD as a subroutine.

7 Next Steps

The primary area for improvement in our implementation lies in enhancing parallelism within

the Single Source Shortest Path (SSSP) phase. Current strategies, such as parallelizing over ver-

tices rather than edges, could significantly improve computational efficiency in sparse graphs. Ap-

proaches such as graph partitioning [4] and contraction hierarchies [1] provide promising avenues

for achieving this. However, constructing a general, simple algorithm for time-dependent graphs

remains a challenging task. Future work should also explore adaptive techniques that dynamically

adjust the level of parallelism based on the graph’s topology and the time-dependent characteristics

of the edges. Such adaptivity could optimize performance across a variety of scenarios and help

in scaling to even larger graphs. Finally, well tailored implementations of different approaches are

generally best practice when it comes to extracting the most out of specific resources with specific

constraints.

Page 13

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

8 Work split

Felipe - 50%

Ethan - 50%

Page 14

Parallel Route Planning with Time-Dependent Graphs Felipe Mautner, Ethan Muchnik

References

[1] Daniel Delling and Dorothea Wagner. “Time-Dependent Route Planning*”. In: (). url: https:

//i11www.iti.kit.edu/extra/publications/dw-tdrp-09.pdf.

[2] Jure Leskovec et al. Community Structure in Large Networks: Natural Cluster Sizes and the

Absence of Large Well-Defined Clusters. 2008. arXiv: 0810.1355 [cs.DS].

[3] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with Interactive Graph

Analytics and Visualization”. In: AAAI. 2015. url: https://networkrepository.com.

[4] Yuxin Tang, Yunquan Zhang, and Hu Chen. “A Parallel Shortest Path Algorithm Based on

Graph-Partitioning and Iterative Correcting”. In: 2008 10th IEEE International Conference

on High Performance Computing and Communications. 2008, pp. 155–161. doi: 10.1109/

HPCC.2008.113.

Page 15

https://i11www.iti.kit.edu/extra/publications/dw-tdrp-09.pdf
https://i11www.iti.kit.edu/extra/publications/dw-tdrp-09.pdf
https://arxiv.org/abs/0810.1355
https://networkrepository.com
https://doi.org/10.1109/HPCC.2008.113
https://doi.org/10.1109/HPCC.2008.113

	Summary
	Background
	Assumptions made
	Algorithms

	Approach
	Problem representation and practical considerations
	The Algorithm
	Performance debugging
	Naive parallelization over edges (edge relaxation)
	Data Structure choices

	Experiments
	Results
	Individual SS-TDD performance
	Cache Misses and Scalability
	Limiting factors of performance
	Limited information based on graph size
	Machine-related points of interest

	Conclusion
	Next Steps
	Work split

